if a + b = 15 and ab = 36 find the value of A^3+b^3
Answers
Answered by
1
Answer:
9+6= 15 and a*b=36 is 9*4 = 36
Answered by
0
Answer:
a^3+b^3 = 1755
Step-by-step explanation:
a + b = 15 -----eq(1)
ab = 36 -------eq(2)
a=36/b -------eq(3)
Put eq(3) in eq(1)
36/b + b = 15
36 + b^2 = 15b
b^2 - 15b + 36 = 0
(b^2 - 3b) - (12b - 36) = 0
b(b-3) -12(b-3) = 0
(b-3)(b-12) = 0
b-3 = 0 or b-12 = 0
b = 3 b = 12
Case 1 :
If b=3
a=36/3
a=12
a^3 + b^3 = 12^3 + 3^3 = 1728 + 27 = 1755
Case 2 :
If b=12
a=36/12
a=3
a^3+b^3 = 3^3 + 12^3 = 27 + 1728 = 1755
a^3+b^3 = 1755
Similar questions