if (a+b)=15 and ab=36 what is the value of a²+b²
a. 21
b.97
c.153
d.60
Answers
Answer:
153
Step-by-step explanation:
As per the information provided in the question, We have :
- (a + b) = 15
- ab = 36
We are asked to find the value of a²+b².
In order to find the value of a²+b², We will simplify the given equations.
⇒(a + b)² = a² + 2ab + b²
⇒15² =a² + b² + 2 × 36
⇒a² + b² = 15 × 15 – 72
⇒a² + b² = 225 – 72
⇒a² + b² = 225 – 72
⇒a² + b² = 153
∴ Hence, The value of a² + b² is 153. (Option C)
Learn more!
- ( a + b)² = a² + b² + 2ab
- ( a - b )² = a² + b² - 2ab
- ( a + b )² + ( a - b)² = 2a² + 2b²
- ( a + b )² - ( a - b)² = 4ab
- ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
- a² + b² = ( a + b)² - 2ab
- (a + b )³ = a³ + b³ + 3ab ( a + b)
- ( a - b)³ = a³ - b³ - 3ab ( a - b)
- If a + b + c = 0 then a³ + b³ + c³ = 3abc.
Question :
If (a + b) = 15 and ab = 36 what is the value of a² + b²
To Find :
- The value of a² + b²
GivEn Data :
- (a + b) = 15
- ab = 36
Identity Used :
- a² + b² = (a + b)² - 2ab
How to do :
Using the given identity we need to put the values of (a + b) and ab then square the value of (a + b) and multiply 2 with the value of ab and at last we need to subtract 2ab from (a + b)² to get a² + b²
Solution :
Using the identity we get :
- a² + b² = (a + b)² - 2ab
- a² + b² = (15)² - 2(36)
- a² + b² = 225 - 72
- a² + b² = 153
Hence, the answer is 153
∴ Option C is correct i.e 153
Know More Identities :
- ( a + b)² = a² + b² + 2ab
- ( a - b )² = a² + b² - 2ab
- ( a + b )² + ( a - b)² = 2(a² + b²)
- ( a + b )² - ( a - b)² = 4ab
- ( a + b + c )² = a² + b² + c² + 2(ab + bc + ca)
- (a + b - c)² = a² + b² + c² + 2(ab - bc - ca)
- a² + b² = ( a + b)² - 2ab
- (a + b )³ = a³ + b³ + 3ab( a + b)
- ( a - b)³ = a³ - b³ - 3ab( a - b)
Regards
# BeBrainly