Math, asked by vennelaboddeti1713, 9 months ago

If a+b=15 and ab=56,find the value of (a^2+b^2)

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{a^{2}+b^{2}=113}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }} \\  \tt:  \implies a + b = 15 \\  \\  \tt :  \implies ab = 56 \\  \\ \red{\underline \bold{To \: Find: }} \\  \tt:  \implies  {a}^{2}  +  {b }^{2}  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab \\  \\  \text{Putting \: given \: values} \\  \\ \tt:  \implies  {a}^{2}  +  {b}^{2}  =  {15}^{2}  - 2 \times 56 \\  \\ \tt:  \implies  {a}^{2}  +  {b}^{2}  =  225 - 112 \\  \\ \green{\tt:  \implies  {a}^{2}  +  {b}^{2}  = 113} \\  \\   \blue{\bold{Some \: related \: formula}} \\  \blue{\tt \circ \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab} \\  \\ \blue{\tt \circ \:  {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2}   - 2ab} \\  \\ \blue{\tt \circ \:   {a}^{2} -  {b}^{2}    = (a + b)(a - b)} \\  \\ \blue{\tt \circ \:   {a}^{2} +  {b}^{2}    =   {(a - b)}^{2} - 2ab }

Answered by Saby123
4

 \tt{\huge{\green{Hello !!! }}}

Question :

If a+b=15 and ab=56,find the value of (a^2+b^2).

Solution :

\tt{\orange {Step-By-Step-Explaination \::- }}

Identity Used :

 \tt{ \purple{ \leadsto{ {( a+ b)}^{2} =  {a}^{2} +  {b}^{2} + 2ab   }}}

Hence

 \tt{ \green{ \leadsto{ {a}^{2} + {b}^{2} =   {(15)}^{2}  - 112 =  113}}} ......(A)

  \\ \\ \orange{\bold{Some \: related \: formula \: :-}} \\ \green{\tt \square \: {(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab} \\ \\ \blue{\tt \square \: {(a - b)}^{2} = {a}^{2} + {b}^{2} - 2ab} \\ \\  \red{\tt \square \: {a}^{2} - {b}^{2} = (a + b)(a - b)} \\ \\ \pink{\tt \square \: {a}^{2} + {b}^{2} = {(a - b)}^{2} - 2ab }

Similar questions