Math, asked by chandrarekhatrivedi, 2 months ago

If (√a+√b) = 17 and (√a-√b)=1,then find √ab​

Answers

Answered by Anonymous
2

Answer:

Explain:

Question ⤵

(√a+√b) = 17

\huge \mathcal \blue{Solution : }

\huge \mathbb \purple{To \:  be \:  known}

√ab = ?

\large \orange {\underline{ \bold{Have \:  Given:-}}}

( \sqrt{a} -  \sqrt{b})=1

( \sqrt{a}+ \sqrt{b} ) = 17

\bold{On  \: squaring  \: both  \: sides: -}

( \sqrt{a}+ \sqrt{b} )^{2}  = (17)^{2}

\large \bold{ \underline{ \green {Formula : -  }}}

(a + b)^{2}  = (a - b)^{2}  + 4ab

\scriptsize{( \sqrt{a} -  \sqrt{ b})^{2}  + 4 [(\sqrt{a}) ( \sqrt{b})]  = 289}

 \scriptsize(1)^{2}  + 4 \sqrt{ ab} = 289   \: [\because( \sqrt{a} -  \sqrt{ b})  = 1]

 1 + 4 \sqrt{ ab}= 289

4 \sqrt{ ab} = 289 - 1

4 \sqrt{ ab}= 288

 \sqrt{ab} =  \frac{288}{4}

 \sqrt{ab} = 72

I hope it is helpful

Similar questions