Math, asked by titan276, 1 year ago

if (√a+√b)=17 and (√ab)=72 then find the value of √(√a-√b)​

Answers

Answered by anshudalal23
0

Answer:

Step-by-step explanation:

Answered by erinna
1

The possible values of \sqrt{(\sqrt{a}-\sqrt{b})} are 1,-1, i and -i .

Step-by-step explanation:

Given information: (\sqrt{a}+\sqrt{b})=17 and \sqrt{ab}=72.

We need to find the value of \sqrt{(\sqrt{a}-\sqrt{b})}.

(\sqrt{a}+\sqrt{b})=17

Taking square on both sides.

(\sqrt{a}+\sqrt{b})^2=17^2

(\sqrt{a})^2+2\sqrt{a}\sqrt{b}+(\sqrt{b})^2=189         [\because (a+b)^2=a^2+2ab+b^2]

a+2\sqrt{ab}+b=289

a+2(72)+b=289

a+b+144=289

a+b=289-144

a+b=145                  ..... (1).

(\sqrt{a}-\sqrt{b})^2=(\sqrt{a})^2-2\sqrt{a}\sqrt{b}+(\sqrt{b})^2

(\sqrt{a}-\sqrt{b})^2=a-2\sqrt{ab}+b

(\sqrt{a}-\sqrt{b})^2=(a+b)-2(72)

Using equation (1) we get

(\sqrt{a}-\sqrt{b})^2=145-144

(\sqrt{a}-\sqrt{b})^2=1

Taking square root on both sides.

(\sqrt{a}-\sqrt{b})=\pm 1

(\sqrt{a}-\sqrt{b})= 1   and (\sqrt{a}-\sqrt{b})=-1

Taking square root.

\sqrt{(\sqrt{a}-\sqrt{b})}= \pm 1   and \sqrt{(\sqrt{a}-\sqrt{b})}=\pm \sqrt{-1}=\pm i

Therefore, the possible values of \sqrt{(\sqrt{a}-\sqrt{b})} are 1,-1, i and -i .

#Learn more

Find the value of a^3 +b^3 ifa+b=72 ab=5​.

https://brainly.in/question/14452346

Similar questions