if a+b=17 and ab is 72 , then find a-b
Answers
Answered by
0
Step-by-step explanation:
we have the formula:
(a + b) ² = a² + b² + 2ab
17² = a² + b² + 2*72
a² + b² = 289 - 144
a² + b² = 145
Now,
(a - b)² = a² + b² - 2ab
(a - b)² = 145 - 2*72
(a - b)² = 1
(a - b) = 1
Answered by
0
Answer:
1
Step-by-step explanation:
a+b = 17 - (i)
ab = 72 - (ii)
Formula - ( a + b ) ² = a² + b² + 2ab
Take square of first equation
= 17² = 289
289 = a² + b² + 2 × 72
289 = a² + b² + 144
a² + b² = 289 - 144
a² + b² = 145
Now formula of (a-b)² = a² + b² - 2ab
Now put value of a² + b² and ab in above equation
(a-b)² = 145 - 2×72
(a-b)² = 145 - 144
(a-b)² = 1
square root both sides
a-b = √1
a-b = 1
Similar questions