Math, asked by sitakri258, 4 months ago

If A:B = 2:3 and B:C= 4:9, then find the value of A:C.​

Answers

Answered by Anonymous
6

Given :-

  • A:B = 2:3
  • B:C = 4:9

To find :-

  • A:C

Solution :-

Here, A:B = 2:3

so,

 \sf  \dfrac{A}{B}  =  \dfrac{2}{3}

 \sf  a =  \dfrac{2B}{3}

Thus, A = 2B/3.

Now, B:C :-

B:C = 4:9

so,

  \sf \dfrac{B}{C}  =  \dfrac{4}{9}

 \sf c  =  \dfrac{4B}{9}

Hence, C = 4B/9.

At last , A:C

\sf A:C =  \frac{\dfrac{2B}{3}}{\dfrac{4B}{9} }

B will be cancelled, We get :-

\sf A:C =  \frac{\dfrac{2}{3}}{\dfrac{4}{9} }

By cross multiplication,

\sf A:C =   \dfrac{2 \times 4}{3  \times 9}

\sf A:C =   \dfrac{8}{27}

Therefore, A:C = 8:27.

Answered by Anonymous
4

Given:-

  • A:B = 2:3
  • B:C= 4:9

To Find:-

  • A:C = ?

Solution:-

Here,A:B = 2:3

So,

\sf\frac{A}{B}=\sf\frac{2}{3}

a=

Thus,A = 2B/3.

Now, B:C:-

B :C = 4:9

So,

\sf\frac{B}{C}=\sf\frac{4}{9}

C= \sf\frac{4B}{9}

Hence,C = 4B/9.

At last, A:C

A :C = \sf{\frac{{\frac{2}{3}}{{\frac{4}{9}}}

A:C = \sf\frac{2×4}{3×9}

A : C = \sf\frac{8}{27}

Therefore,A :C = 8 :27.

Similar questions