Math, asked by guddu41, 1 year ago

if a:b=2/9:1/3,b:c=2/7:5/14 and d:c=7/10:3/5,then find a:b:c:d ?

Answers

Answered by sumo2
76
it is one of the processes. ..
there is also another process..to solve it
u can change the ratios a:b=2:3
b:c=4:5
d:c= 7:6
then go for it
the ans will be same
@sumo
Attachments:
Answered by gratefuljarette
34

The value of a:b:c:d is 32:48:60:70

Given:

\frac{A}{B}=\frac{2}{9} : \frac{1}{3}

\frac{B}{C}=\frac{2}{7} : \frac{5}{14}

\frac{D}{C}=\frac{7}{2} : \frac{3}{1}

To find:

Value of a:b:c:d

Solution:

From the given,  

\frac{A}{B}=\frac{2}{9} : \frac{1}{3}=\frac{2}{3} : 1=2 : 3

\frac{B}{C}=\frac{2}{7} : \frac{5}{14}=2 : \frac{5}{2}=4 : 5

\frac{D}{c}=\frac{7}{2} : \frac{3}{1}=7 : 6

Therefore, the given equations becomes,

A : B=2 : 3 ; B : C=4 : 5 ; C : D=6 : 7

A : B=2 : 3(8 : 12) \times 4=32 : 48

B : C=4 : 5=(12 : 15) \times 4=48 : 60

C : D=(6 : 7) \times 10=60 : 70

Such that A:B:C: D = 32:48:60:70  

Then the above values of ‘A, B, C, D’ are divisible by 2 and then the values of “A, B, C, D” becomes,

A:B:C: D =16:24:30:35

Similar questions