If (a + b) = 2 and (a - b) = 10, find the values of : (i) (a² + b²) (ii) ab.
Answers
Answered by
4
Answer:
52 & - 24
Step-by-step explanation:
Square on both sides of (a + b) and (a - b), then add both:
→ (a + b)² + (a - b)² = 2² + 10²
→ (a² + b² + 2ab)+(a² + b² - 2ab) = 4+100
→ a² + b² + 2ab + a² + b² - 2ab = 104
→ 2(a² + b²) = 104
→ a² + b² = 52
Square on both sides of a + b:
→ (a + b)² = 2²
→ a² + b² + 2ab = 4
→ 52 + 2ab = 4 {a²+b²=52}
→ 2ab = 4 - 52 = - 48
→ ab = (-48/2)
→ ab = - 24
Answered by
2
(a+b)² = a² + b² + 2ab
and
(a-b)² = a² + b² - 2ab
now
(a+b)² - (a-b)² = 4ab
put the value of a+b =2 and a-b =10
2² - 10² = 4ab
ab = -96/4
(I) ab = -24
Again
(a+b)² + (a-b)² = 2(a²+b²)
2² + 10² = 2 (a²+b²)
a² + b² = 104/2
(ii) a² + b² = 52
Similar questions