If (a + b) = 2 and (a - b) = 10 then the value of (a2 + b2 )
Answers
Answer:
The value of a² + b² is 52 and the value of ab is - 24.
Step-by-step explanation:
Solution :-
We know that
(a + b)² = (a - b)² + 4ab
Here
• a + b = 2
• a - b = 10
By substituting the values
⇒ (2)² = (10)² + 4ab
⇒ 4 = 100 + 4ab
⇒ 4 - 100 = 4ab
⇒ - 96 = 4ab
⇒ - 96/4 = ab
⇒ - 24 = ab
⇒ ab = - 24
We know that
(a + b)² = a² + b² + 2ab
Here
• a + b = 2
• ab = - 24
By substituting the values
⇒ (2)² = a² + b² + 2(-24)
⇒ 4 = a² + b² - 48
⇒ 4 + 48 = a² + b²
⇒ 52 = a² + b²
⇒ a² + b² = 52
Therefore the value of a² + b² is 52 and the value of ab is - 24.
Answer:
52
Step-by-step explanation:
(a+b) = 2 ---------(1)
(a-b) = 10 ------------(2)
now add 1 and 2
a + b = 2
a - b = 10
---------------
=} 2a = 12
a = 12/2
a = 6
now substitute a=6 in 1
=} a+b = 2
=} 6+b=2
=} b= 2-6
=}b= -4
substitute both a and b in (a^2 + b^2)
=} (6)^2 + (-4)^2
=} 36 + 16
=} 52
hope it helped
have a good day