Math, asked by bhumi232, 9 months ago

if a-b=2 and a+b=4 then find value of a and​

Answers

Answered by MяƖиνιѕιвʟє
3

Given

if a-b=2 and a+b=4 then find value of a and b

Solution

Given equations

  • a - b = 2 --(i)
  • a + b = 4 --(ii)

Add both the equations

(a - b) + (a + b) = 2 + 4

➪ a - b + a + b = 6

➪ 2a = 6

➪ a = 6/2 = 3

Put the value of " a " in equation (i)

➪ a - b = 2

➪ 3 - b = 2

➪ b = 3 - 2

➪ b = 1

Therefore, the required value of " a " = 3

And the required value of " b " = 1

Answered by Anonymous
4

\bold\blue{Question}

\bold{If \ a-b=2 \ and \ a+b=4 \ then \ find }

\bold{the \ value \ of \ a \ and \ b.}

\bold\red{\underline{\underline{Answer:}}}

\bold{Value \ of \ a \ and \ b \ are \ 3 \ and \ 1 \ respectively. }

\bold\orange{Given:}

\bold{=>a-b=2}

\bold{=>a+b=4}

\bold\pink{To \ find:}

\bold{Value \ of \ a \ and \ b.}

\bold\green{\underline{\underline{Solution}}}

\bold{=>a-b=2...(1)}

\bold{=>a+b=4...(2)}

\bold{Add \ equations(1) \ and \ (2), \ we \ get}

\bold{2a=6}

\bold{a=\frac{6}{2}}

\bold{a=3}

\bold{Substitute \ a=3 \ in \ eq(2)}

\bold{3+b=4}

\bold{b=4-3}

\bold{b=1}

\bold\purple{\tt{\therefore{Value \ of \ a \ and \ b \ are \ 3 \ and \ 1 \ respectively. }}}

Similar questions