Math, asked by Anonymous, 1 month ago

If a + B = -2 and a3 + b3 = 28, then thequadratic equation having roots a and Bwill be....

Answers

Answered by amansharma264
18

EXPLANATION.

⇒ a + b = - 2.

⇒ a³ + b³ = 28.

As we know that,

We can write equation as,

⇒ a³ + b³ = 28.

As we know that,

Formula of :

⇒ x³ + y³ = (x + y)(x² + y² - xy).

Using this formula in the equation, we get.

⇒ (a + b)(a² + b² - ab) = 28.

Put the values of a + b = - 2 in the equation, we get.

⇒ (-2)(a² + b² - ab) = 28.

⇒ (a² + b² - ab) = - 14.

As we know that,

Formula of :

⇒ x² + y² = (x + y)² - 2xy.

Using this formula in the equation, we get.

⇒ [(a + b)² - 2ab - ab] = - 14.

⇒ [(a + b)² - 3ab] = - 14.

Put the value of a + b = - 2 in the equation, we get.

⇒ [(-2)² - 3ab] = - 14.

⇒ [4 - 3ab] = - 14.

⇒ 4 - 3ab = - 14.

⇒ 4 + 14 = 3ab.

⇒ 18 = 3ab.

⇒ ab = 6.

Sum of the zeroes of the quadratic polynomial.

⇒ a + b = - b/a.

⇒ a + b = - 2. - - - - - (1).

Products of the zeroes of the quadratic polynomial.

⇒ ab = c/a.

⇒ ab = 6. - - - - - (2).

As we know that,

Formula of quadratic polynomial.

⇒ x² - (a + b)x + ab.

Put the values in the equation, we get.

⇒ x² - (-2)x + 6.

⇒ x² + 2x + 6.

                                                                                                                         

MORE INFORMATION.

Range of quadratic equation.

(1) = For y = ax² + bx + c,  if a > 0.

⇒ F(x) ∈ [-D/4a, ∞).

(2) = For y = ax² + bx + c, if a < 0.

⇒ F(x) ∈ (-∞, -D/4a].

Answered by rekhagupta9523964994
0

plz mark me as brainlist

Attachments:
Similar questions