Math, asked by akohli2594, 7 months ago

If a+b=2 and ab= -24, find the values of (i) a³-b³ (ii) a³+b³​

Answers

Answered by mathdude500
2

Answer:

a + b = 2 \\  {(a + b)}^{3}  = 8 \\  {a}^{3}  +  {b}^{3 }  + 3ab(a + b) = 8 \\ {a}^{3}  +  {b}^{3 }  + 3( - 24)(2) = 8 \\ {a}^{3}  +  {b}^{3 }  - 144 = 8 \\ {a}^{3}  +  {b}^{3 }  = 144 + 8 = 152

we know

 {(a + b)}^{2}  -  {(a - b)}^{2}  = 4ab \\  {2}^{2}  - {(a - b)}^{2} = 4( - 24) \\ 4 - {(a - b)}^{2} =  - 96 \\ {(a - b)}^{2} = 100 \\ a - b \:  = 10 \\ cubing \: both \: sides \\  {a}^{3}  -  {b}^{3}  - 3ab(a - b) =   1000  \\ {a}^{3}  -  {b}^{3} - 3( - 24)(10) =  1000 \\ {a}^{3}  -  {b}^{3} =  1000  - 720 = 280

Similar questions