Math, asked by roongta, 1 year ago

if a=b^2=c^3=d^4 then the value of log(abcd) to base a

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{a=b^2=c^3=d^4}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{log\,_a\,(abcd)}

\underline{\textbf{Solution:}}

\mathsf{a=b^2=c^3=d^4=k\;\;(say)}

\mathsf{a=k}

\mathsf{b^2=k\;\implies\;b=k^\dfrac{1}{2}}

\mathsf{c^3=k\;\implies\;c=k^\dfrac{1}{3}}

\mathsf{d^4=k\;\implies\;d=k^\dfrac{1}{4}}

\mathsf{Now,}

\mathsf{log\,_a\,(abcd)}

\mathsf{=log\,_k\left(k\,k^{\dfrac{1}{2}}\,k^{\dfrac{1}{3}}\,k^{\dfrac{1}{4}}\right)}

\mathsf{=log\,_k\left(k^\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)\right)}

\mathsf{=log\,_k\left(k^\left(\dfrac{12+6+4+3}{12}\right)\right)}

\mathsf{=log\,_k\,\left(k^\left(\dfrac{25}{12}\right)\right)}

\textsf{Using power rule of logarithm, we get}

\mathsf{=\dfrac{25}{12}\;log\,_k\,k}

\mathsf{=\dfrac{25}{12}\;(1)}\;\;\mathsf{(\because\;log\,_aa=1)}

\mathsf{=\dfrac{25}{12}}

\implies\boxed{\mathsf{log\,_a\,(abcd)=\dfrac{25}{12}}}

#SPJ3

Answered by bharathparasad577
0

Answer:

Concept:

A base must be raised to a certain exponent or power, or logarithm, in order to produce a specific number. If  b^{x} = n  then x is the logarithm of n to the base b, which is expressed mathematically as x = log_{b} n.

Step-by-step explanation:

Given:

Given \ $a=b^{2}=c^{3}=d^{4}$

Find:

what \ is \ the \ value \ of $\log _{a} a b c d=$ ?
Solution:
       
$$\begin{aligned}\log _{a}^{a b c d} &=\log _{a} a\left(b^{2}\right)^{1 / 2}\left(c^{3)^{1 / 3}}\left(d^{4}\right)^{\frac{1}{4}}\right.\\&=\log _{a}+\frac{1}{2} \log _{a}^{b^{2} +\frac{1}{3} \log c^{3}+1 / \log _{a}^{4}} \\ &=1+\frac{1}{2} \log a+\frac{1}{3} \log a+\frac{1}{4} \log a \\&=1+\frac{1}{2} \cdot 1+\frac{1}{3} \cdot 1+\frac{1}{4} \cdot 1 \\&=\frac{12+6+4+3}{12} \\\log _{a} a b c d &=\frac{25}{12}\end{aligned}$$

#SPJ3

Similar questions