if (a+b)(2+i) = b + 1 + (10+2a)i then a and b are
Answers
ANSWER:
Given:
- (a+b)(2+i) = b + 1 + (10+2a)i
To Find:
- Value of a and b
Solution:
We are given that,
⇒(a+b)(2+i) = b + 1 + (10+2a)i
⇒2(a + b) + (a + b)i = b + 1 + (10 + 2a)i
Now, we will compare the real and imaginary parts. So,
REAL PART:
⇒2(a + b) = b + 1
⇒2a + 2b = b + 1
⇒2a + 2b - b = 1
⇒2a + b = 1 --------(1)
IMAGINARY PART:
⇒a + b = 10 + 2a
⇒10 + 2a = a + b
⇒10 + 2a - a - b = 0
⇒a - b = -10 --------(2)
Now, we will add (1) & (2),
⇒2a + b + a - b = 1 - 10
⇒3a = -9
⇒a = -9/3
⇒a = -3
Putting value of a in (2),
⇒a - b = -10
⇒-3 - b = -10
⇒3 + b = 10
⇒b = 10 - 3
⇒b = 7
Hence, a = -3 and b = 7.
Step-by-step explanation:
ANSWER:
Given:
(a+b)(2+i) = b + 1 + (10+2a)i
To Find:
Value of a and b
Solution:
We are given that,
⇒(a+b)(2+i) = b + 1 + (10+2a)i
⇒2(a + b) + (a + b)i = b + 1 + (10 + 2a)i
Now, we will compare the real and imaginary parts. So,
REAL PART:
⇒2(a + b) = b + 1
⇒2a + 2b = b + 1
⇒2a + 2b - b = 1
⇒2a + b = 1 --------(1)
IMAGINARY PART:
⇒a + b = 10 + 2a
⇒10 + 2a = a + b
⇒10 + 2a - a - b = 0
⇒a - b = -10 --------(2)
Now, we will add (1) & (2),
⇒2a + b + a - b = 1 - 10
⇒3a = -9
⇒a = -9/3
⇒a = -3
Putting value of a in (2),
⇒a - b = -10
⇒-3 - b = -10
⇒3 + b = 10
⇒b = 10 - 3
⇒b = 7
Hence, a = -3 and b = 7.