Physics, asked by pandeysanskar03, 1 year ago

if |a^-b^|=√2.then calculate the value of |a^+√3b^|

Answers

Answered by AyushVahangna
54

Answer:

Explanation:

a = 1

b = 1

Angle = 90°

Cos90° = 0

Attachments:
Answered by payalchatterje
3

Answer:

The value of  |\hat a + \sqrt3 \hat b|  is equal to  2 .

Explanation:

Given,

            |\hat a -\hat b|  = \sqrt2  

 →   \hat a^2 +\hat b^2-2|\hat a||\hat b| \cos\theta = 2      [\hat a   \ and  \   \hat b   are the unit vectors ]              

    → 1 + 1 - 2 1.1.cos\theta  =2            [magnitude of unit vectors is equal to 1]

    → cos\theta  =0

Now,   |\hat a + \sqrt3 \hat b|   =\sqrt \hat a^2 + 3\hat b^2 +2\sqrt3 |\hat a||\hat b| cos\theta

                            = \sqrt{1 +3 + 0

                            =  \sqrt{4}

                             = 2

Similar questions