if A+ B =225, then the value of ( 1 + tanA)(1 + tanB) is
Answers
Answered by
3
Hi ,
A + B = 225
A = 225 - B
Tan A = tan( 225 - B )
= Tan [ 180 + ( 45 - B ) ]
= Tan ( 45 - B )
= ( Tan45-tan B )/[1 + tan45tanB]
= ( 1 - tanB ) / ( 1 + tanB ) ---( 1 )
Now ,
According to the problem given ,
( 1 + tanA ) ( 1 + tanB )
= [1+ (1 - tanB)/(1+tanB )]( 1 + tan B )
[ From ( 1 ) ]
= [(1+tanB + 1-tanB )/( 1+tanB ) ](1+tanB)
= 2
I hope this helps you.
:)
A + B = 225
A = 225 - B
Tan A = tan( 225 - B )
= Tan [ 180 + ( 45 - B ) ]
= Tan ( 45 - B )
= ( Tan45-tan B )/[1 + tan45tanB]
= ( 1 - tanB ) / ( 1 + tanB ) ---( 1 )
Now ,
According to the problem given ,
( 1 + tanA ) ( 1 + tanB )
= [1+ (1 - tanB)/(1+tanB )]( 1 + tan B )
[ From ( 1 ) ]
= [(1+tanB + 1-tanB )/( 1+tanB ) ](1+tanB)
= 2
I hope this helps you.
:)
Similar questions