If A+B=225, then what is the value of (1+tan A)(1+tan B)?
Answers
Answered by
18
A+B=225=180+45
i.e tan(A+B)=tan (180+45)
i.e. tan(A+B)=tan45
i.e tan(A+B)= 1
i.e. (tanA+tanB)/(1-tanAtanB)=1
i.e. tanA+tanB=1-tanAtanB
i.e. tanA+tanB+tanAtanB=1
i.e. 1+tanA+tanB+tanAtanB=1+1=2
i.e. (1+tanA)(1+tanB)=2
Answered by
1
Step-by-step explanation:
Given A + B = 225.
Multiply with tan on both sides, we get
Tan(A + B) = tan 225
Tan(A + B) = tan(180 + 45)
Tan(A + B) = Tan 45
Tan(A + B) = 1.
Tan A + Tan B/1 - Tan A Tan B = 1
Tan A + Tan B = 1 - Tan A Tan B
Tan A + Tan B + Tan A Tan B = 1 -------- (1)
Given (1 + Tan A)(1 + Tan B)
= 1 + Tan B + Tan A + Tan A Tan B
= 1 + 1
= 2.
Therefore (1 + Tan A)(1 + Tan B) = 2.
- Hope it's help you..
Similar questions