Math, asked by somaallhit, 9 months ago

if a+b+2c=0, prove that a^3+b^3+8c^3=6abc​

Answers

Answered by Anonymous
197

\large{\underline{\underline{\mathfrak{\green{\bf{Solution:-}}}}}}.

\large{\underline{\underline{\mathfrak{\bf{Given\:here:-}}}}}.

  • a+b+ 2c = 0.........(1)

\large{\underline{\underline{\mathfrak{\bf{Proved\:Here:-}}}}}.

  • \:a^3+b^3+8c^3\:=\:6abc

\large{\underline{\underline{\mathfrak{\bf{Explanation:-}}}}}.

Given Here,

  • (a+b+2c)=0

\implies\:(a+b)\:=\:-2c

Taking Cube of both side,

\implies\:(a+b)^3\:=\:(-2c)^3

\implies\:a^3+b^3+3ab(a+b)\:=\:(-8c^3)..........(2)

We know, by equation (1),

  • a+b = -2c ..........(3)

Keep value in equation (2) ,

\implies\:a^3+b^3+3ab(-2c)\:=\:(-8c^3)

\boxed{\implies\:a^3+b^3+8c^3\:=\:6abc}

Thats proved .

________________________

Similar questions