Math, asked by dana2007, 7 days ago

• If a+b+2c=0 then prove a³+b³+8c³ = 6abc​

Answers

Answered by underratedsid121
0

Answer:

proof below

Step-by-step explanation:

a+b=-2c

(a+b)³ = (-2c)³

a³+b³+3ab(a+b)=-8c³

a³+b³+8c³=-3ab(-2c) {as a+b=-2c}

a³+b³+8c³=6abc

Mark Brainliest if you have got help

thanks

Answered by mathdude500
7

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a + b + 2c = 0

\large\underline{\sf{To\:prove - }}

\red{\rm :\longmapsto\: {a}^{3} +  {b}^{3} +  {8c}^{3} = 6abc}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a + b + 2c = 0

We know that,

\red{\rm :\longmapsto\:If \: a + b + c = 0 \: then \:  {a}^{3} +  {b}^{3} +  {c}^{3} = 3abc}

So, using this identity, we get

{\rm :\longmapsto\:{a}^{3} +  {b}^{3} +  {(2c)}^{3} = 3ab(2c)}

{\rm :\longmapsto\:{a}^{3} +  {b}^{3} +  {8c}^{3} = 6abc}

Hence, Proved

Alternative Method :-

Given that,

\rm :\longmapsto\:a + b + 2c = 0

can be rewritten as

\rm :\longmapsto\:a + b  =  - 2c

On Cubing both sides, we get

\rm :\longmapsto\:(a + b) {}^{3}   = ( - 2c) {}^{3}

\rm :\longmapsto\: {a}^{3} +  {b}^{3}  + 3ab(a + b) =  - 8 {c}^{3}

\rm :\longmapsto\: {a}^{3} +  {b}^{3}  + 3ab( - 2c) =  - 8 {c}^{3}  \:  \:  \:  \{ \because \: a + b =  - 2c \}

\rm :\longmapsto\: {a}^{3} +  {b}^{3} - 6abc =  - 8 {c}^{3}  \:  \:  \:  \{ \because \: a + b =  - 2c \}

\rm :\longmapsto\: {a}^{3} +  {b}^{3}  +  8 {c}^{3}   = 6abc

Hence, Proved

Additional Information :-

More Identities to know :-

\boxed{ \rm{  {(x + y)}^{2} =  {x}^{2} +  {y}^{2}  + 2xy}}

\boxed{ \rm{  {(x - y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}

\boxed{ \rm{  {(x - y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x - y)}}

\boxed{ \rm{  {(x + y)}^{3} =  {x}^{3} +   {y}^{3}  +  3xy(x + y)}}

\boxed{ \rm{  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2}}}

\boxed{ \rm{  {x}^{3}  -   {y}^{3} = (x  -  y)( {x}^{2}   +  xy +  {y}^{2}}}

Similar questions