Math, asked by samiyapandlekar2216, 2 months ago

If a/b = 3/2, then find a³ + b³/ b³​

Answers

Answered by KnowtoGrow
0

Answer: \frac{a^3 + b^3}{b^3} = \frac{35}{8}  

Explanation:

Given:  \frac{a}{b } = \frac{3}{2}

To find:  \frac{a^3 + b^3}{b^3}

Proof:

= \frac{a^3 + b^3}{b^3}

= \frac{a^3}{b^3} + \frac{b^3}{b^3}

= (\frac{a}{b})^3 + (\frac{b}{b})^3                                                [  \frac{a^m}{b^m} = (\frac{a}{b})^m ]

= (\frac{3}{2})^{3 }+ (1)^3                                                 [ \frac{a}{b } = \frac{3}{2}, Given ]

= \frac{3^3}{2^3} +1                                                         [ (\frac{a}{b})^m = \frac{a^m}{b^m} ]

= \frac{27}{8} + 1

= \frac{27 + 8}{8}                                                            [ L.C.M ]

= \frac{35}{8}

Hence, proved.

Hope you got that.

Thank You.

Similar questions