Math, asked by avanideshmukh, 8 months ago

If a + b√3 =√3-1/√3+1, find the value of a and b​

Answers

Answered by amansharma264
5

EXPLANATION.

To find Value of a and b.

  • using identities
  • ( a² - b² ) = ( a + b) ( a - b)
  • ( a - b) ² = a² + 2ab + b²

 \sf :  \implies \:  \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  = a \:  +  \: b \sqrt{3}  \\  \\ \sf :  \implies \: rationalise \: the \: term \\  \\ \sf :  \implies \:  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \times  \frac{ \sqrt{3 } - 1 }{ \sqrt{3}  - 1} \\  \\  \sf :  \implies \:  \frac{ (\sqrt{3}  - 1) {}^{2} }{( \sqrt{3} ) {}^{2} -( 1) {}^{2}  }

\sf :  \implies \:  \dfrac{(3 + 1 - 2 \sqrt{3} )}{2} \\  \\  \sf :  \implies \:  \frac{4 - 2 \sqrt{3} }{2}  \\  \\ \sf :  \implies \:  \frac{2(2 -  \sqrt{3} )}{2}  \\  \\ \sf :  \implies \: 2 -  \sqrt{3}  = a \:  +  \: b \:  \sqrt{3}

\sf :  \implies \:  \green{{ \underline{value \: of \: a \:  = 2 \:  \: and \:  \:  \: b \:  =  - 1}}}

Answered by Darkrai14
1

Given:-

\rm a+b\sqrt{3}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}

To find:-

The value of a and b

Solution:-

\rm\dashrightarrow a+b\sqrt{3}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}

First we will rationalise the denominator

Here, denominator is 3 + 1 , so it's conjugate will be 3 - 1

Multiplying 3 - 1 in numerator and denominator will imply,

\rm\dashrightarrow a+b\sqrt{3}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1} \times \dfrac{\sqrt{3}-1}{\sqrt{3}-1}

\rm\dashrightarrow a+b\sqrt{3}=\dfrac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}

Since, \rm (a-b)^2=a^2+b^2-2ab \ and \ (a+b)(a-b)=a^2-b^2, Therefore,

\rm\dashrightarrow a+b\sqrt{3}=\dfrac{(\sqrt{3})^2+(1)^2-2\times\sqrt{3}\times 1}{(\sqrt{3})^2-(1)^2}

\rm\dashrightarrow a+b\sqrt{3}=\dfrac{3+1-2\sqrt{3}}{3-1}

\rm\dashrightarrow a+b\sqrt{3}=\dfrac{4-2\sqrt{3}}{2}

\rm\dashrightarrow a+b\sqrt{3}=\dfrac{2(2-1\sqrt{3})}{2}

\rm\dashrightarrow a+b\sqrt{3}=2-1\sqrt{3}

\rm\dashrightarrow a+b\sqrt{3}=2+(-1\sqrt{3})

On comparing, we get

a = 2 and b = -1

Similar questions