Math, asked by mrpavankumar720, 11 months ago

if a:b=3:4 and b:c=5:6, find a:b:c​

Answers

Answered by mysticd
8

Answer:

a:b:c = 15:20:24

Step-by-step explanation:

a:b = 3:4

\frac{a}{b}= \frac{3}{4}\\=\frac{3\times 5}{4\times 5}\\=\frac{15}{20}\:--(1)

\frac{b}{c}= \frac{5}{6}\\=\frac{5\times 4}{6\times 4}\\=\frac{20}{24}\:--(2)

a:b = 15:20 ----(1)

**b:c = 20:24 ----(2)

a:b:c = 15:20:24

Therefore,

a:b:c = 15:20:24

Answered by Alcaa
3

a : b : c​ = 15 : 20 : 24

Step-by-step explanation:

We are given that a : b = 3 : 4 and b : c = 5 : 6  and we have to find a : b : c.

Firstly, representing above in fraction form we get;

                     \frac{a}{b}= \frac{3}{4}​             and             \frac{b}{c}= \frac{5}{6}

For finding a : b : c, we have to first make the value of b same in both the fractions, that means;

  •   \frac{a}{b}= \frac{3}{4}​  

Multiplying and numerator and denominator by 5 in above fraction we get;

                                  \frac{a}{b}= \frac{3\times 5}{4\times 5}

                                  \frac{a}{b}= \frac{15}{20}

  •  \frac{b}{c}= \frac{5}{6}

Multiplying and numerator and denominator by 4 in above fraction we get;

                                  \frac{b}{c}= \frac{5\times 4}{6\times 4}

                                  \frac{b}{c}= \frac{20}{24}

Now, as we can see that the value of b is same in both the fractions, so the value of  a : b : c = 15 : 20 : 24.

Similar questions