if a-b = 3, a³-b³ = 63 find a²+b²
don't spam
Answers
Answered by
3
Answer:
17
Step-by-step explanation:
a-b = 3
so,
(a-b)² = 9
a²+b²-2ab = 9 -------- (i)
a³-b³ = 63
(a-b)(a²+b²+ab) = 63
as (a-b) = 3
so,
3(a²+b²+ab) = 63
a²+b²+ab = 63/3
a²+b²+ab = 21
2(a²+b²+ab) = 2×21. ( multiplying both sides by 2)
2a² +2b²+2ab = 42 -------- (ii)
after adding (i) and (ii) we get
a²+b²-2ab + 2a²+2b²+2ab = 42+9
3a²+3b² = 51
3(a²+b²) = 51
a²+b² = 51/3
a²+b² = 17
i hope it may help you plz mark it as brainliest
Answered by
0
Identity : (a-b)^3 = a^3 - b^3 -3ab( a-b)
(3)^3 = 63 - 3ab(3)
27 -63 = -9ab
36/9 = ab
ab = 4
(a-b)^2 = a^2 + b ^2 + 2ab
(3)^2 = a^2 + b^2 + 2(4)
9-8= a^2 + b^2
1 = a^2 + b^2
(3)^3 = 63 - 3ab(3)
27 -63 = -9ab
36/9 = ab
ab = 4
(a-b)^2 = a^2 + b ^2 + 2ab
(3)^2 = a^2 + b^2 + 2(4)
9-8= a^2 + b^2
1 = a^2 + b^2
Similar questions