Math, asked by asthakhodare, 1 year ago

if a+b=√3 and a-b 1÷√3 then find value of a and b

Answers

Answered by Anonymous
0

\huge \red { \boxed{ \boxed{ \mathsf{ \mid \ulcorner Answer :\urcorner \mid }}}}

a + b = √3___________(1)

a - b = 1/√3________________(2)

Add (1) and (2)

a + b + a - b = √3 + 1/√3

2a = 3 + 1/√3

2a = 4/√3

a = 4/√3 × 2

a = 2/√3

____________________________

Put Value of a in (1)

2/√3 + b = √3

b = √3 - 2/√3

b = √3-2/√3

Answered by Anonymous
5

 \large \underline{ \underline{ \sf \: Solution : \:  \:  \: }}

  \star \: \:  \:  \sf a + b =  \sqrt{3} \:  -  -  -  -  \: (i)  \\  \\ \sf \star \:  \:  \:  a - b =  \frac{1}{ \sqrt{3} }  \:  -  -  -  -  \: (ii)

By elimination method , Add equation (i) and (ii)

 \implies \sf a + b + (a - b)=  \sqrt{3}  +  \frac{1}{ \sqrt{3} }  \\  \\ \implies \sf 2a =  \frac{3 + 1}{ \sqrt{3} }  \\  \\ \implies \sf a =  \frac{2}{ \sqrt{3} }

Put the value of a = 2/√3 in eq (i)

 \implies \sf \frac{2}{ \sqrt{3} }  + b =  \sqrt{3}  \\  \\ \implies \sf b =  \sqrt{3}   -  \frac{2}{ \sqrt{3} }  \\  \\ \implies \sf b =  \frac{3  - 1}{ \sqrt{3} }  \\  \\ \implies \sf b =  \frac{1}{ \sqrt{3} }

 \thereforeThe required values of a and b are 2/√3 and 1/√3

Similar questions