Math, asked by ankitakm70, 6 months ago

. If a +b = 3 and a - b = 2, what is the value of
8ab(a2 + b2)?​

Answers

Answered by VishnuPriya2801
11

Answer:-

Given:

a + b = 3 -- equation (1)

a - b = 2 -- equation (2)

Add equations (1) & (2).

⟹ a + b + a - b = 3 + 2

⟹ 2a = 5

⟹ a = 5/2

Substitute the value of a in equation (1).

⟹ 5/2 - b = 3

⟹ 5/2 - 3 = b

⟹ (5 - 6) / 2 = b

⟹ - 1/2 = b

We have to find:

⟹ 8ab (a² + b²)

Putting the values we get,

⟹ 8(5/2)( - 1/2) [ (5/2)² + ( - 1/2)² ]

⟹ ( - 10) [ 25/4 + 1/4 ]

⟹ ( - 10) [ (25 + 1) / 4 ]

⟹ ( - 10) ( 26/4)

- 65

The required answer is - 65.

Answered by Anonymous
57

Answer:

{ \huge{ \underline{ \large{ \rm { \pink{Given:}}}}}}

  • a + b = 3.......(1)
  • a - b = 2 ...... (2)

 \huge{ \underline{ \rm{ \large{ \red{Find:}}}}}

  • 8ab(a² + b²)

 \huge{ \underline{ \rm{ \large{ \green{Solution:}}}}}

Add equation (1) & (2)

a + b + a - b = 3 + 2

2a = 5

a = 5/2

⠀⠀⠀⠀⠀⠀⠀⠀⠀

So, value of a is 5/2 .

Let us substitute the value of a in equation(1)

a + b = 3

5/2 + b = 3

b = 3 - 5/2

b = -1/2

So, Value of b is -1/2

Now let us find 8ab (a² + b²) ,

{ \to{8 \times  \frac{5}{2} \times  \frac{ - 1}{2}  (( { \frac{5}{2}) }^{2} +   { (\frac{ - 1}{2}) }^{2}) }}

{ \to{4 \times 5 \times  \frac{ - 1}{2} ( \frac{25}{4}  +  \frac{1}{4}) }}

{ \to{20 \times  \frac{ - 1}{2}( \frac{25 + 1}{4}  ) }}

{ \to{ \frac{ - 20}{2}  \times  \frac{26}{4} }}

{ \to{ - 5 \times 13 =  - 65 }}

{ \therefore{ \sf{ \blue{Value \:  of  \: 8ab(a² + b²)  \: is \:  -65}}}}

Similar questions