if a+b = 3 and ab=2 then find a³+b³
Answers
Answered by
0
Answer:
cubing both the sides,
(a+b)^3 =3^3
a^3+b^3+3ab(a+b) =27
a^3+b^3+3×2(3) =27
a^3+b^3+18=27
a^3+b^3=9
Answered by
0
Answer:
Step-by-step explanation:
(a-b) (a^2+ab+b^2)
(a-b)(a^2+2+b^2)
a(a^2+2+b^2)-b(a^2+2+b^2)
a^3+2a+2ab-2ab+2b+b^3
(a^3+2a)+(2b+b^3)
a(a^2+2)+b(2+b^2)
a+b(a^2+2+2+b^2)
3(a^2+4+b^2)
3a^2+12+3b^2
Similar questions