Math, asked by gaudkashyup, 7 months ago

If a + b = -3 and ab = -5/2

then find the quadratic equation whose roots
are a and b.

Answers

Answered by kaushik05
51

Given :

• Sum of zeroes ( a + b ) = -3

• Product of Zeroes ( ab) = -5/2

To find

• The quadratic equation .

Solution :

As we know that :

Quadratic equation

=> - ( sum of Zeroes )x + product of zeroes =0

Put the given values :

=> x² - (-3)x + ( -5/2) = 0

=> x² + 3x -5/2 = 0

=> (2x² + 6x -5) / 2 = 0

=> 2x² + 6x -5 = 0

Hence , the quadratic equation is 2x² + 6x -5 .

Answered by ZAYNN
85

Answer:

  • Sum of Zeroes ( α + β ) = - 3
  • Product of Zeroes ( αβ ) = - 5/2
  • Quadratic Polynomial = ?

\underline{\bigstar\:\textsf{According to the given Question :}}

:\implies\sf Polynomial=x^2-(Sum\:of\:Zeroes)x+Product\:of\:Zeroes\\\\\\:\implies\sf Polynomial=x^2 -(\alpha + \beta)x + ( \alpha \beta)\\\\\\:\implies\sf Polynomial=x^2 - ( - 3)x +\bigg(-\dfrac{5}{2}\bigg)\\\\\\:\implies\sf Polynomial=x^2 +  3x - \dfrac{5}{2}\\\\{\scriptsize\qquad\bf{\dag}\:\:\frak{multiplying \:\:each \:\:by\:\:2}}\\\\:\implies\sf Polynomial=(2 \times x^2) +  (2 \times 3x) - \bigg(2 \times \dfrac{5}{2}\bigg)\\\\\\:\implies\underline{\boxed{\sf Polynomial = 2x^2 + 6x - 5}}

\therefore\:\underline{\textsf{Required quadratic equation is \textbf{2x$^\text2$ + 6x - 5}}}.

\rule{180}{1.5}

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\sf with zeroes \alpha\:\sf and\:\beta \\\\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta= \dfrac{ - \:b}{a}\:\:\bigg\lgroup\bf Sum\:of\:Zeroes\bigg\rgroup \\\\\\{\textcircled{\footnotesize2}} \: \:\alpha  \beta= \sf\dfrac{c}{a}\:\:\bigg\lgroup\bf Product\:of\:Zeroes\bigg\rgroup\end{minipage}}

Similar questions