If A-B=3pi/4 then show that (1-tanA)(1+tanB)=2
Answers
Answer:
(1-tanA)(1+tanB)=2
Step-by-step explanation:
A-B=3π/4
APPLY 'tan' ON BOTH SIDES
Tan(A-B)=Tan(3π/4)
tanA-tanB/1+tanAtanB=tan(135°)
tanA-tanB/1+tanAtanB= -1
tanA-tanB= -(1+tanAtanB)
tanB-tanA = 1-tanAtanB
tanB-tanA-tanAtanB = -1
ADD '-1' ON BOTH SIDES
-1+tanB-tanA-tanAtanB= -1+(-1)
(1-tanA)(1+tanB) = 2
Hence Proved
Given:
The difference between angles A and B is 3π/4.
To find:
The proof of the equation (1-tanA)(1+tanB) = 2.
Solution:
The given problem can be solved using the standard trigonometric formulae.
1. The difference between the angles A and B is,
=> A - B = 3π/4,
=> Apply Tan on both the sides,
=> Tan(A-B)=Tan(3π/4),
=> (TanA - TanB)/(1+TanATanB)=tan(135°),
=> (TanA-TanB)/(1+TanAtanB)= -1
=> (TanA-TanB)= -(1+TanATanB)
=> TanA - TanB = -1 -TanATanB,
=> TanA - Tan B + TanATanB = -1. (Consider as equation 1).
2. The LHS part of the equation to be proven is,
=> (1-tanA)(1+tanB), ( Expand the expression ),
=> 1 + TanB -TanA -TanATanB,
=> 1 + - ( TanA + TanATanB - TanB ), (Value of ( TanA + TanATanB - TanB ) = -1 from equation 1 )
=> 1 + - ( -1 ),
=> 2 = RHS.
∴ Hence Proved
Therefore, the value of (1-tanA)(1+tanB) is 2.