if a+b = 4 and a^3+b^3 = 28. find a^2+b^2
Answers
Answered by
1
Answer:
10
Step-by-step explanation:
let a be 3 and b be 1
now on applying it on equation we get
3+1 =4
3^3 + 1^3 = 28
27 + 1 = 28
3^2 + 1^2 = ?
9 + 1 = ?
10 = ?.
Answered by
6
Answer:
10
Step-by-step explanation:
using id.
(a + b)^3 = a^3 + b^3 + 3ab (a+b)
4^3 = 28 + 3ab (4)
64 - 28 = 3ab x 4
36/4 = 3ab
9/3 = 3 = ab
now ,using id.
(a+b)^2 = a^2 + b^2 + 2ab
4^2 = a^2 + b^2 + 2 (3)
16 - 6 = 10 = a^2 + b^2
hence , a^2 + b^2 = 10
Similar questions