if a+b=4 and ab=-12,find a^2-b^2
Answers
Answer:
a² - b² = ± 32
Step-by-step explanation:
⇒ a + b = 4
⇒ a = 4 - b ... ( 1 )
Substituting this in another equation we get,
⇒ ab = -12
⇒ ( 4 - b ) ( b ) = -12
⇒ 4b - b² = -12
⇒ b² - 4b - 12 = 0
⇒ b² - 6b + 2b - 12 = 0
⇒ b ( b - 6 ) + 2 ( b - 6 ) = 0
⇒ ( b + 2 ) ( b - 6 ) = 0
⇒ b = -2, 6
Case 1: If b = -2
⇒ a = 4 - b
⇒ 4 - ( -2 ) = 4 + 2 = 6
Case 2: If b = 6
⇒ a = 4 - b = 4 - 6 = -2
Hence the numbers are 6 and -2.
⇒ a² - b² = ?
Case 1: a = 6 and b = -2
⇒ ( 6 )² - ( -2 )²
⇒ 36 - 4 = 32
Case 2: a = -2, b = 6
⇒ ( -2 )² - ( 6 )²
⇒ 4 - 36 = -32
Hence the answer for a² - b² can be ± 32 depending on the values of a and b.
Hope it helped !!
Thanks !!
Answer:
Step-by-step explanation:
Given that a+b= 4
a=4-b
To find the value of a^2-b^2
Put value of a in the equation
(4-b)^2-b^2
Use identity : (x-y)^2= x^2+y^2+2xy
=16 + b^2 + 2×4×b -b^2
=16+8b= 8(2+b)