If a + b = 4 and ab = -12, find a-b and a+b
Answers
HOPE IT HELPED YOU ,
HAVE A NICE DAY
STAY SAFE
Step-by-step explanation:
Answer :
\large{\star\:\:\boxed{\bf{a^2\:-\:b^2\:=\:60}}\:\:\star}⋆a2−b2=60⋆
Explanation :
Given :–
a - b = 4
ab = 52.25
To Find :–
The value of a² - b² .
Formula Applied :–
\boxed{\star\:\:\bf{(a\:+\:b)^2\:=\:(a\:-\:b)^2\:+\:4ab}\:\:\star}⋆(a+b)2=(a−b)2+4ab⋆
\boxed{\star\:\:\bf{a^2\:-\:b^2\:=\:(a\:+\:b)(a\:-\:b)}\:\:\star}⋆a2−b2=(a+b)(a−b)⋆
Solution :–
We have ,
a - b = 4
ab = 52.25
Putting these values in the Formula :-
\rightarrow\sf{(a\:+\:b)^2\:=(a\:-\:b)^2\:+\:4ab}→(a+b)2=(a−b)2+4ab
\rightarrow\sf{(a\:+\:b)^2\:=\:(4)^2\:+\:4(52.25)}→(a+b)2=(4)2+4(52.25)
\rightarrow\sf{(a\:+\:b)^2\:=\:16\:+\:209}→(a+b)2=16+209
\rightarrow\sf{(a\:+\:b)^2\:=\:225}→(a+b)2=225
\rightarrow\sf{a\:+\:b\:=\:\sqrt{225}}→a+b=225
\rightarrow\bf{a\:+\:b\:=\:15}→a+b=15
Now we have ,
a + b = 15
a - b = 4
Putting these values in the Formula :
\rightarrow\sf{a^2\:-\:b^2\:=\:(a\:+\:b)(a\:-\:b)}→a2−b2=(a+b)(a−b)
\rightarrow\sf{a^2\:-\:b^2\:=\:(15)(4)}→a2−b2=(15)(4)
\rightarrow\boxed{\bf{a^2\:-\:b^2\:=\:60}}→a2−b2=60
∴ The value of a² - b² is 60 .
→ What do you need to know ?
➤ You need to know that how (a + b)² and (a - b)² +4ab are Equal ?
Answer :-
Let's first open the Brackets by applying the Appropriate Formula :
➼ (a² + 2ab + b²) = (a² - 2ab + b²) + 4ab
➼ a² + 2ab + b² = a² -2ab + 4ab + b²
➼ a² + 2ab + b² = a² + 2ab + b²
➼ LHS = RHS
Hence Proved .