if A+B=π/4 then (1+tanA)(1+tanB) is equal to
Answers
Answered by
2
Applying tan for the the equation A+B=45
We get...
Tan(A+B)= tan 45°
Where tan (A+B) = tan A +tanB/1-tan A tan B
Therefore,
Tan A +tan B/ 1-tanA tanB=1. (Since tan45°= 1)
TanA+ tan B=1– tanAtanB
TanA+TanB+Tan A TanB=1
TanA+TanB(1+TanA) = 1
Now adding one on both sides...
1+tanA+ Tan B ( Tan A+1)= 1+1
(TanA+1)(1+tanB) = 2
Therefore the answer is 2
Similar questions