Math, asked by manjeetsharan67, 11 months ago

If A-B=π/4, then prove that (1+tanA)(1-tanB)=2​

Answers

Answered by tennetiraj86
3

Answer:

if A-B=π/4 then (1+TanA)(1-TanB)=2

Attachments:
Answered by talasilavijaya
0

Answer:

Proved that (1+tanA)(1-tanB)=2,

Step-by-step explanation:

Given to prove (1+tanA)(1-tanB)=2

Given A-B=\frac{\pi }{4}

\implies A-B=\frac{\ 180 }{4}

\implies A-B=45^{o}

Taking tan on both sides,

tan(A-B)=1

Using the trigonometric identity, tan(A-B)=\frac{tanA-tanB}{1+tanAtanB}, we get

\frac{tanA-tanB}{1+tanAtanB} =1

\implies tanA-tanB=1+tanAtanB                                             ...(1)

Consider the left hand side of the identity to be proved,

(1+tanA)(1-tanB)

Opening the brackets by multiplying the terms,

=1+tanA-tanB-tanAtanB

Substituting equation (1)

=1+1+tanAtanB-tanAtanB

=2

Hence, it is proved that (1+tanA)(1-tanB)=2,

Similar questions