Math, asked by Gaurav2202, 7 months ago

If A+B = π/4 then value of (CotA -1) (CotB - 1) =?​

Answers

Answered by mathdude500
5

Question:-

\bf \:If A + B =  \dfrac{\pi}{4}, \: find \: (cotA - 1)(cotB - 1)

\bf\underbrace\orange{Answer:}

Given :-

\bf \:A + B =  \dfrac{\pi}{4}

To find :-

  • The value of (cotA - 1)(cotA + 1)

Formula used :-

\bf \:cot(A  -  B) = \dfrac{cotAcotB  + 1}{cotB  -  cotA}

\bf\underbrace\orange{Solution:}

\bf \:A + B = \dfrac{\pi}{4}

\bf\implies \:B = \dfrac{\pi}{4}  - A

Consider

\bf \:(cotA - 1)(cotB - 1)

Put the value of B, we get

\bf\implies \:(cotA - 1)(cot(\dfrac{\pi}{4}   - A)- 1)

\bf\implies \:(cotA - 1)(\dfrac{cot\dfrac{\pi}{4} cotA  +  1}{cotA - cot\dfrac{\pi}{4}  }  - 1)

\bf\implies \:(cotA - 1)(\dfrac{cotA + 1}{cotA - 1}  - 1)

\bf\implies \:(cotA - 1)(\dfrac{cotA + 1 - cotA + 1)}{cotA - 1}

\bf\implies \:2

____________________________________________

Similar questions