Math, asked by arjunmachani007, 1 year ago

if A+B=45 prove that {1+TanA}{1+TanB}=2

Answers

Answered by Aalimkhann
8

tan 45 =1

and 4th step add 1 both the side

thank u

Attachments:
Answered by BrainlyVanquisher
1

Given:-

  • A + B = 45°

Apply tan on both sides.

  • ⟶ tan (A + B) = tan 45°

  • tan (A + B) = (tan A + tan B) / 1 - tan A tan B

  • tan 45° = 1

So,

⟶ tan A + tan B / 1 - tan A tan B = 1

⟶ tan A + tan B = 1 - tan A tan B

⟶ tan A + tan B + tan A tan B = 1

Adding 1 on both sides we get,

⟶ tan A + tan A tan B + tan B + 1 = 1 + 1

⟶ tan A ( 1 + tan B) + 1 (1 + tan B) = 2

⟶ (1 + tan B)(1 + tan A) = 2

⟶ (1 + tan A)(1 + tan B) = 2

Hence, Proved !

___________________

Additional Information:-

  • sin (A + B) = sin A cos B + cos A sin B

  • cos (A + B) = cos A cos B - sin A sin B.

  • sin (A - B) = sin A cos B - cos A sin B

  • cos (A - B) = cos A cos B + sin A sin B.

  • sin 2A = 2 sin A cos A

  • cos 2A = cos² A - sin² A.
Similar questions