if A+B=45 show that (1+Tan A) (1+tanb)=2
Answers
Answered by
8
sol
A+B=45
To Prove: (1+tanA)(1+tanB)=2
Taking L.H.S
tan (A+B)=tan A+tanB/1-tanAtanB
=tan45=tanA+tanB/1-tanAtanB
=1-tanAtanB=tanA+tanB
=2=1+tanA+tanB+tanAtanB
=2=(1+tanA)(1+tanB)
Hence proved
A+B=45
To Prove: (1+tanA)(1+tanB)=2
Taking L.H.S
tan (A+B)=tan A+tanB/1-tanAtanB
=tan45=tanA+tanB/1-tanAtanB
=1-tanAtanB=tanA+tanB
=2=1+tanA+tanB+tanAtanB
=2=(1+tanA)(1+tanB)
Hence proved
Answered by
3
Heya ,
A+B =45°(given)
now ,
tan(A+B)=Tan45°
=TanA+TanB/1-TanA●TanB=1
=TanA+TanB=1-TanA●TanB
=TanA+TanB+TabA●TanB=1
now ,adding (1) on both side
then it become
=1+TanA+TanB+TanA●TanB=1+1
=(1+TanA)+TanB(1+TanA)=2
=(1+TanA)(1+TanB)=2
hope it help you
@rajukymar☺●●●●
A+B =45°(given)
now ,
tan(A+B)=Tan45°
=TanA+TanB/1-TanA●TanB=1
=TanA+TanB=1-TanA●TanB
=TanA+TanB+TabA●TanB=1
now ,adding (1) on both side
then it become
=1+TanA+TanB+TanA●TanB=1+1
=(1+TanA)+TanB(1+TanA)=2
=(1+TanA)(1+TanB)=2
hope it help you
@rajukymar☺●●●●
Similar questions