if A+B=45' then prove that (1+tanA)(1+tanB)=2
Answers
Answered by
1
Answer:
Given A+B=45
{Take tan on both the sides }
tan(A+B) = tan45
tanA+tanB/1- tanA tanB = 1
tanA+tanB=1-tanA.tanB
tanA+tanB+tanA.tanB=1
adding "1" on both sides
1+ tanA+tanB+tanA.tanB=1+1
(1 + tanA)+tanB(1+tanA).=2
(1+tanA)(1+tanB)=2 Hence proved
Answered by
3
Step-by-step explanation:
Given A+B=45
{Take tan on both the sides }
tan(A+B) = tan45
tanA+tanB/1- tanA tanB = 1
tanA+tanB=1-tanA.tanB
tanA+tanB+tanA.tanB=1
adding "1" on both sides
1+ tanA+tanB+tanA.tanB=1+1
(1 + tanA)+tanB(1+tanA).=2
(1+tanA)(1+tanB)=2 Hence proved .
Similar questions