Math, asked by harshithanallamothu, 2 months ago

if A+B=45' then prove that (1+tanA)(1+tanB)=2​

Answers

Answered by lakshmimaruboina8688
1

Answer:

Given A+B=45

{Take tan on both the sides }

tan(A+B) = tan45

tanA+tanB/1- tanA tanB = 1

tanA+tanB=1-tanA.tanB

tanA+tanB+tanA.tanB=1

adding "1" on both sides

1+ tanA+tanB+tanA.tanB=1+1

(1 + tanA)+tanB(1+tanA).=2

(1+tanA)(1+tanB)=2 Hence proved

Answered by mirgalriddhi
3

Step-by-step explanation:

Given A+B=45

{Take tan on both the sides }

tan(A+B) = tan45

tanA+tanB/1- tanA tanB = 1

tanA+tanB=1-tanA.tanB

tanA+tanB+tanA.tanB=1

adding "1" on both sides

1+ tanA+tanB+tanA.tanB=1+1

(1 + tanA)+tanB(1+tanA).=2

(1+tanA)(1+tanB)=2 Hence proved .

Similar questions