if A=B=45°, so proof that sin(A+B)=sinA cosB + cosA sinB
Answers
Answered by
1
Step-by-step explanation:
A=B=45°
sin(A+B)=sinA cosB + cosA sinB
sin(45+45)=sin45cos45+cos45sin45
sin90=(1/√2)(1/√2)+(1/√2)(1/√2)
1=1/2+1/2
1=1
LHS=RHS
Hence proved
Answered by
2
Answer:
RHS=sin(A+B) =90°=1
LHS=sinAcosB+cosAsinB=1/√2*1/√2+1/√2*1/√2
=1/2+12
=1
Hence proved
Similar questions