if A+B = 45° then (1+ tanA) (1+tanB) is equal to
Answers
Answered by
15
A+B=45°
so, tan(A+B)= tan45
tanA+tanB/1- tanAtanB=1
tanA+ tanB= 1-tanAtanB
tanA +tanB+ tanAtanB=1
1+tanA +tanB+ tanAtanB=1+1 (adding 1 on both sides)
1(1+tanA) +tanB(1+tanA) =2
(1+tanA)(1+tanB)=2
Thus, (1+tanA)(1+tanB)=2
so, tan(A+B)= tan45
tanA+tanB/1- tanAtanB=1
tanA+ tanB= 1-tanAtanB
tanA +tanB+ tanAtanB=1
1+tanA +tanB+ tanAtanB=1+1 (adding 1 on both sides)
1(1+tanA) +tanB(1+tanA) =2
(1+tanA)(1+tanB)=2
Thus, (1+tanA)(1+tanB)=2
Answered by
13
hope u can understand
Attachments:
137AMU:
please mark it as a brain list answer
Similar questions