If A+B = 45° , then find (CotA-1) (CotB-1).
(A) 1
(B) 2
(C) 4
(D) 3
Answers
Answered by
4
Hii friend,
A+B = 45°
B = 45°-A
(Cot A - 1) ( Cot B -1)
= (1/Tan A - 1 ) ( 1/Tan B - 1)
= (1/Tan A-1) ( 1/ Tan (45-A) -1)
= (1-Tan A/ Tan A ) ( 1/Tan45° - Tan A -1)
= (1/Tan A / Tan A ) ( 1+Tan45° Tan A -1 / Tan 45°- Tan A )
= (1-Tan A / Tan A ) ( 1+Tan A -1/ 1-Tan A)
= (1-Tan A / Tan A ) ( 2 Tan A / 1- Tan A )
= 2
Therefore,
Option (B) is right answer.
HOPE IT WILL HELP YOU..... :-)
A+B = 45°
B = 45°-A
(Cot A - 1) ( Cot B -1)
= (1/Tan A - 1 ) ( 1/Tan B - 1)
= (1/Tan A-1) ( 1/ Tan (45-A) -1)
= (1-Tan A/ Tan A ) ( 1/Tan45° - Tan A -1)
= (1/Tan A / Tan A ) ( 1+Tan45° Tan A -1 / Tan 45°- Tan A )
= (1-Tan A / Tan A ) ( 1+Tan A -1/ 1-Tan A)
= (1-Tan A / Tan A ) ( 2 Tan A / 1- Tan A )
= 2
Therefore,
Option (B) is right answer.
HOPE IT WILL HELP YOU..... :-)
Answered by
1
The right answer is (B)
Similar questions