If A + B = 450, then prove that (1 + tanA) (1 + tanB) = 2.
Answers
Answered by
5
Answer:
To prove (1+Tan A ) (1 + tan B ) =×
Step-by-step explanation:
taking l.h.s.
tan( A+ B)= tan A + tan B/1- tanAtanB
= tan45°=tanA+tanB/1-tanAtanB
=1-tanAtanB=tanA+tanB
=2=1+tanA+tanB+tanAtanB
=2=(1+tanA)(1+tanB)
Hence Proved
Answered by
2
Answer:
Given,
A + B = 45°
apply tan on both sides
tan(A+B)=tan45°
w.k.t(we know that)
So,
[tan45°=1]
now cross multiply
tanA+tanB=1-tanAtanB
tanA+tanAtanB+tanB=1
tanB+tanA(1+tanB)=1
now,
add 1 on both sides
1+tanB+tanA(1+tanB)=1+1
1(1+tanB)+tanA(1+tanB)=2
(1+tanA)(1+tanB)=2
∴Hence prove
Similar questions