if A+B =45° then prove that (1+tanA) (1+tanB)=2 and hence deduce that tan22 1/2°
Answers
Step-by-step explanation:
Given:-
A+B =45°
To find:-
Prove that (1+tanA) (1+tanB)=2 and hence deduce that tan22 1/2°
Solution:-
Given that : A+B = 45°
On taking Tan both sides then
=> Tan (A+B)=Tan 45°
=>( Tan A+ Tan B)/(1-Tan A TanB) = 1
=> Tan A+ Tan B = 1- Tan A Tan B
=> Tan A+ Tan B + Tan A Tan B = 1 ---(1)
LHS:
(1+ Tan A)(1+TanB)
=>1(1+ Tan B) + Tan A(1+TanB)
=> 1+ Tan B + Tan A+ Tan A Tan B
=> 1+ ( Tan A Tan B + Tan A Tan B)
=> 1+1 ( from (1))
=> 2
=> RHS
LHS= RHS
(1 + tan A) (1 + tan B) = 2
Hence, Proved
We know that
Tan A/2 = √[(1- Cos A)/(1+CosA)]
Take A = 45° then A/2 = 22 1/2°
=> Tan 45°/2
=>√[(1- Cos 45°)/(1+Cos45°)]
=>√[(1-(1/√2))/(1+(1/√2))]
=>√[{(√2-1)/√2}/{(√2+1)/√2}]
=>√[(√2-1)/(√2+1)
On Rationalising the denominator
=>√[(√2-1)(√2-1)/(√2+1)(√2-1)]
=>√[(√2-1)^2/(2-1)]
=>√(√2-1)^2/1
=>√(√2-1)^2
=>√2-1
Tan 22 1/2° = √2-1
Answer:-
Tan 22 1/2° = √2-1
Used formulae:-
- Tan (A+B)=( Tan A+ Tan B)/(1-Tan A TanB)
- Tan A/2 = √[(1- Cos A)/(1+CosA)]
- Tan 45°=1
- Cos 45° = 1/√2