Math, asked by ss1630253, 1 year ago

if A+B=45°than show that (1+tanA)(1+tanB)=2 explain in telugu<br /><br /><br />​

Answers

Answered by kvnmurty
128

Answer:

It's a proof.. to prove the validity of an equation.

Step-by-step explanation:

A+B=45°.

so Tan(A+B) = 1

so (Tan A + Tan B )/(1-Tan A ×Tan B) = 1.

Take the denominator to the other side and rearrange the factor on the RHS.

so Tan A + Tan B + Tan A × Tan B = 1

Add 1 on both sides and factorize the LHS to get

(1+Tan A) (1+Tan B) = 2.

proved.

done.

Answered by Anonymous
82

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Given that,

\sf{x + y = 45} \\  \\  \longrightarrow \:  \sf{tan(x + y) = tan 45}

To Prove

 \sf (1 + tan \: x)(1 + tan \: y) = 2

Now,

 \longrightarrow \:  \sf{ \dfrac{tan \: x + tan \: y}{1 - tan \: x.tan \: y} = 1 } \\  \\  \longrightarrow \:  \sf{tan \: x + tan \: y = 1 - tan \: x.tan \: y} \\  \\  \longrightarrow \:    \underline{\boxed{\sf{tan \: x +  \: tan \: y + tan \: x.tan \: y = 1}}}

Adding one on both sides,we get :

 \longrightarrow \:  \sf{tan \: x + tan \: y + tan \: x.tan \: y + 1 = 1 + 1} \\  \\  \longrightarrow \:  \sf{1(1 + tan \: x) + tan \: y(1 + tan \: x) = 2} \\  \\  \longrightarrow \:  \tt{(1 + tan \: x)(1 + tan \: y) = 2}

Henceforth,Proved


Anonymous: Awesome
Similar questions