Math, asked by cutey64, 4 months ago

if a-b=4anda+b=6;find a square + b square and ab​

Answers

Answered by Anonymous
2

Answer ⤵️⤵️

pls mark me as brainlist ♡︎

hope it helps ♡︎

(i) We know that,

( a - b )2 = a2 - 2ab + b2 

Rewrite the above identity as,

a2  + b2 = ( a - b ) + 2ab           ....(1)

Similarly, we know that,

( a + b )2 = a2 + 2ab + b2

Rewrite the above identity as,

 a2  + b2 = ( a + b )2 - 2ab                                     .....(2)

Adding the equations (1) and (2), we have

2( a2 + b2 ) = ( a - b )2 + 2ab + ( a + b )2 - 2ab

⇒ 2( a2 + b2 ) = ( a - b )2  + ( a + b )2

⇒ ( a2 + b2 ) = 12[(a-b)2 +(a+b)2]          ....(3)

Given that a + b = 6 ; a - b = 4

Substitute the values of ( a + b ) and (a - b)

in equation (3), we have

a2 + b2 = 12[(4)2+(6)2]

= 12[16+36]

= 522

⇒ ( a2 + b2 ) = 26                                            .....(4)

From equation (4), we have

a2 + b2 = 26

Consider the identity,

( a - b )2 = a2 + b2 - 2ab                                ....(5)

Substitute the value a - b = 4 and a2 + b2 = 26

in the above equation, we have

(4)2 = 26 - 2ab

⇒ 2ab = 26 - 16

⇒  2ab = 10

⇒  ab = 5

Similar questions