if a:b=5:4 and a^2-b^2=36
what is the solution
Answers
Answer:
a , b = 10 , 8
or -10 , -8
Step-by-step explanation:
a:b = 5:4
a/b = 5/4
a = 5b/4
a^2 - b^2 = 36
(5b/4)^2 - b^2 = 36
25 b^2 / 16 - b^2 = 36
25b^2 - 16b^2 = 36*16
9 b^2 = 36 * 16
b^2 = 4 * 16
b^2 = 64
b = +/- 8
a = 5b/4
a = 5(+/- 8)/4 = +/-10
Answer:
Given,
a + b = 6 …… (1)
a - b = 4 ……. (2)
Method 1: (easiest)
add equation (1) and (2), we get
2a = 6 + 4
=> 2a = 10
=> a = 5
substitute value of a in either of equation (1) or (2),
=> b = 1
Hence ab = 5.1 = 5
————-
Method 2:
we know
(a+b)ˆ2 = aˆ2 + bˆ2 + 2ab
(a-b)ˆ2 = aˆ2 + bˆ2 - 2ab
subtracting equation 2 from 1, we get
(a+b)ˆ2−(a−b)ˆ2=(aˆ2+bˆ2+2ab)−(aˆ2+bˆ2−2ab)
=>(a+b)ˆ2−(a−b)ˆ2=aˆ2+bˆ2+2ab−(aˆ2+bˆ2−2ab)
=>(a+b)ˆ2−(a−b)ˆ2=aˆ2+bˆ2+2ab−aˆ2−bˆ2+2ab
=>(a+b)ˆ2−(a−b)ˆ2=4ab ………… (3)
substituting the values of a+b and a-b in the equation (3) above, we have
=>6ˆ2−4ˆ2=4ab
=>36−16=4ab
=>20=4ab
=>4.5=4ab
=>ab=5
Hence ab = 5