If a+b=5 and a^2+b^2=11 then prove that a^3+b^3=20?
Answers
Answered by
15
a^2 + b^2 = (a+b)^2 - 2ab
(a+b)^2 - 2ab = 11
5^2 - 2ab = 11
25 -2ab = 11
-2ab = -14
ab = 7
now
a^3+b^3 = (a + b)(a^2 + b^2 – ab)
= (5)(11-7)
= 5 * 4
= 20
Answered by
6
Answer:
The proof is given in the solution below :
Step-by-step explanation:
Given,
a + b = 5
a² + b² = 11
Now we know,
( a + b )² = a² + b² + 2ab
Substituting the value of ( a + b ) and a² + b²
( 5 )² = 11 + 2ab
25 = 11 + 2ab
25 - 11 = 2ab
2ab = 14
Dividing both sides by 2,
2ab / 2 = 14 / 2
ab = 7
Now,
a³ + b³ = ( a + b ) ( a² -ab + b² )
a³ + b³ = ( a + b ) ( a² + b² - ab )
Substituting the values,
a³ + b³ = ( 5 ) ( 11 - 7 )
a³ + b³ = ( 5 ) ( 4 )
a³ + b³ = 20
Hence,
Proved that if a+b=5 and a^2+b^2=11 then a^3+b^3=20
Similar questions