If a+b=5 and a²+b²=11 , then prove that a³+b³=20
Answers
Answered by
24
Given :-
a + b = 5
a² + b² = 11
To prove :-
a³ + b³ = 20
Solution :-
Using identity
(a + b)² = a² + b² + 2ab
Putting given values in it.
We get
(5)² = 11 + 2ab
25 = 11 + 2ab
2ab = 25 - 11
2ab = 14
ab = 14 / 2
ab = 7
Now,
Using another identity
a³ + b³ = (a + b)(a² + b² - ab)
R.H.S. = (a + b)(a² + b² - ab)
Putting given values in it.
We get
= (5)(11 - 7)
= 5 × 4
= 20
= L.H.S.
Hence, proved.
This kind of questions can be solved by using identities.
Some other identities are :-
(a - b)² = a² + b² - 2ab
(a - b)³ = a³ - b³ - 3a²b + 3ab²
(a + b)³ = a³ + b³ + 3a²b + 3ab²
a³ - b³ = (a - b)(a² + b² + ab)
a² - b² = (a + b)(a - b)
suresh8074824537:
Do u know 9 th class maths paper 2 question paper please send me whatsapp 8074824547
Answered by
0
Step-by-step explanation:
Given :-
a + b = 5
a² + b² = 11
To prove :-
a³ + b³ = 20
Solution :-
Using identity
(a + b)² = a² + b² + 2ab
Putting given values in it.
We get
(5)² = 11 + 2ab
25 = 11 + 2ab
2ab = 25 - 11
2ab = 14
ab = 14 / 2
ab = 7
Now,
Using another identity
a³ + b³ = (a + b)(a² + b² - ab)
R.H.S. = (a + b)(a² + b² - ab)
Putting given values in it.
We get
= (5)(11 - 7)
= 5 × 4
= 20
= L.H.S.
Hence, proved.
Similar questions