If a-b=5 and a2+b2=37,find the value of ab
Answers
Given that,
(a-b) = 5
a = 5+b ...eq1
a^2 + b^2 = 37 ...eq2
Now, using eq1 and eq2, we get
(5+b)^2 + b^2 = 37
》Consider the identity
(a+b)^2 = a^2+b^2+2ab
Applying the identity
5^2 +b^2 +2×5b +b^2 = 37
25 + b^2 + 10b +b^2 = 37
10b +2b^2 = 37 -25
2(5b+b^2) = 12
5b+b^2 = 12/2 = 6
b^2 +5b -6 = 0
》By Quadratic Formula
x = -b+-√(b^2-4ac) /2a
Applying the formula , we get
b = -5+-√25-{4×1×(-6)} /2×1
b = -5+- √25+24 / 2
b = -5+- √49 / 2
b = -5+- 7 / 2
Now,
b = -5+7/2
b = 2/2 = 1
or
b = -5-7 /2
b = -12 /2
b = -6
Similarly,
(a-b) = 5
b = a-5 ...eq3
(a^2 +b^2) = 37 ...eq4
Now, using eq3 and eq4
a^2 +(a-5)^2 =37
》Consider the identity
(a-b)^2 = a^2+b^2-2ab
a^2 +a^2 +25 -2a(-5) = 37
2a^2 +10a = 37 -25
2(a^2+5a) = 12
a^2 +5a = 12/2
a^2 +5a-6 = 0
》By Factorization method
a^2 +5a -6 = 0
a^2 +6a -a -6 = 0
a(a+6) -1(a+6) = 0
(a-1) (a+6) =0
Now,
a-1 = 0
a = 1
or
a+6 = 0
a = -6
Here,
a-b = 5
So, a = -6
and b = 1
Thus
a×b = -6×1
= -6
Hope it helps !