If a + B=5 and a3 + B3=35
Answers
Answered by
1
Step-by-step explanation:
If a+b=5 and a3+b3=35, what is a5+b5?
la console
8 years ago
Favourite answer
a + b = 5 → a = 5 - b
a³ + b³ = 35 → you know that: a = 5 - b
(5 - b)³ + b³ = 35
[(5 - b)²(5 - b)] + b³ = 35
[(25 - 10b + b²)(5 - b)] + b³ = 35
[125 - 25b - 50b + 10b² + 5b² - b³] + b³ = 35
125 - 75b + 15b² = 35
15b² - 75b + 90 = 0
b² - 5b + 6 = 0
Polynomial like: ax² + bx + c, where:
a = 1
b = - 5
c = 6
Δ = b² - 4ac (discriminant)
Δ = (- 5)² - 4(1 * 6) = 25 - 24 = 1
x1 = (- b - √Δ) / 2a = (5 - 1) / (2 * 1) = 2
x2 = (- b + √Δ) / 2a = (5 + 1) / (2 * 1) = 3
Recall: a = 5 - b
First case: b = 2 → a = 3
Second case: b = 3 → a = 2
→ a^5 + b^5 = 3^5 + 2^5 = 243+ 32 = 275
Similar questions
Chinese,
3 months ago
Math,
3 months ago
Economy,
3 months ago
Social Sciences,
6 months ago
Chemistry,
11 months ago